Getting My البيانات الضخمة To Work
نقص التوافق القانوني: يعتبر تحقيق التوافق القانوني بين متطلبات حماية البيانات واستخدام البيانات الضخمة تحديًا، حيث قد يكون من الصعب مواءمة القوانين المختلفة وتطبيقات البيانات الضخمة.
وهذا يشمل أماكن مثل الهواتف الذكية والأجهزة الداخلية ومحادثات الوسائط الاجتماعية وبيانات مؤشر الأسهم وبيانات من المعاملات المالية.
ومع ازدياد حجم الاختلاف لهذه البيانات الضخمة التي نحتاجها نستخدمها في مختلف القطاعات والشركات، حيث أصبحت اليوم أمام خيارين أساسيين، أحدهما الاستغناء عن هذه البيانات، أو البدء بالتعامل معها بشكل أفضل لتحليلها والإستفادة منها. وتظهر التحديات أمام تقنيات إدارة قواعد البيانات التقليدية في التعامل مع البيانات المختلفة وبالسرعة اللازمة، حيث كانت قواعد البيانات التقليدية تتعامل مع المستندات النصية والأرقام فقط، أما البيانات الضخمة اليوم تحوي أنواع جديدة من البيانات التي لا يمكن تجاهلها، لكن مع استخدام الأدوات التقليدية مسبقاً لن نتمكن من تحليل والاستفادة من هذه البيانات الجديدة الضخمة.
بعد ذلك، يجب تحليل البيانات باستخدام تقنيات تحليل إحصائي متقدمة وتعلم الآلة. يتضمن ذلك استخراج النماذج والتوجهات من البيانات الكبيرة، واكتشاف العلاقات والأنماط الهامة.
تحليل أداء الآلات والمعدات، تحسين سلاسل التوريد وتقليل التكاليف والهدر
يمكن استخدام هذه المعلومات لاتخاذ القرارات وتوجيه الاستراتيجيات وتحسين الأداء بشكل عام. بالتحليل الدقيق للبيانات الكبيرة، يمكن للمؤسسات تحقيق نجاح أكبر وتعزيز تجربة العملاء وتحقيق المزيد من الابتكار والتحسين المستمر.
علوم الكمبيوتر: تعد أجهزة الكمبيوتر العمود الفقري لكل استراتيجية بيانات. سيكون للمبرمجين حاجة مستمرة لابتكار خوارزميات لمعالجة البيانات وتحويلها إلى رؤى.
ترتبط تحليل البيانات الضخمة بالذكاء الاصطناعي بشكل وثيق، حيث يعتبر الذكاء الاصطناعي أداة قوية لاستخراج القيمة من البيانات الضخمة. إليك كيفية ارتباطهما:
مع تزايد عدد الأشخاص الذين يستخدمون الإنترنت بشكل كبير ، لا تنام البيانات أبدًا.
من خلال تطبيق هذه الأدوات، يمكننا فهم العلاقات والأنماط المختلفة في البيانات الكبيرة والتوصل إلى نتائج يمكن الاعتماد عليها في اتخاذ القرارات الإدارية وتحقيق الأهداف المرجوة.
غالبًا ما تكون البيانات الضخمة ، التي تشمل أنواع البيانات المنظمة وغير المنظمة ، هي المادة الخام للمؤسسات لتشغيل التحليلات واستخراج الرؤى التي يمكن أن تساعدهم في صياغة استراتيجيات أعمال أفضل.
وبفضل نور الامارات تقنيات التخزين والمعالجة المتطورة، أصبح بالإمكان استخلاص قيمة كبيرة من هذه البيانات الضخمة.
تمكننا تقنيات تعلم الآلة من استخراج النماذج والتوجهات من البيانات الكبيرة واستخدامها في تطبيقات الذكاء الاصطناعي.
تظهر هذه التطبيقات العملية للبيانات الكبيرة كيف يمكن استخدامها لتحقيق مزايا تنافسية وإحداث تحسينات ملموسة في مجموعة متنوعة من الصناعات.